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A HIGHER-ORDER THEORY FOR
GEOMETRICALLY NONLINEAR ANALYSIS OF
COMPOSITE LAMINATES

by
J. N. Reddy and C. F. Liu
Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University
Blacksburg, Virginia
ABSTRACT
A refined, third-order laminate theory that accounts for the
transverse shear strains is developed, the Navier solutions are derived,
and its finite element modeis are developed. The theory allows
parabolic description of the transverse shear stresses, and therefore
the shear correction factors of the usual shear deformation theory are
not required in the present theory. The theory also accounts for small
strains but moderately large displacements (i.e., von Karman strains).
Closed-form solutions of the linear theory for certain cross-ply and
angle-ply plates and cross-ply shells are derived. The finite-element
model is based on independent approximations of the displacements and
bending moments (i.e., mixed formulation), and therefore only C°-
approximations are required. Further, the mixed variational
formulations developed herein suggest that the bending moments can be
interpolated using discontinuous approximations (across interelement
boundaries). The finite element is used to analyze cross-ply and angle-
ply laminated plates and shells for bending and natural vibration. Many

of the numerical results presented here for laminated shells should

serve as references for future investigations.
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1. INTRODUCTION
1.1 Background

The analyses of composite laminates in the past have been based on

one of the following two classes of theories:
(i) Three-dimensional elasticity theory

(ii) Laminated plate theories
In three-dimensional elasticity theory, each layer is treated as an
elastic continuum with possibly distinct material properties in adjacent
layers. Thus the number of governing differential equations will be 3N,
where N is the number of layers in the laminate. At the interface of
two layers, the continuity of displacements and stresses give additional
relations. Solution of the equations becomes intractable as the number
of layers becomes large.

In a 'laminated plate theory', the laminate is assumed to be in a
state of plane stress, the individual laminae are assumed to be elastic,
and perfect bonding between layers is assumed. The laminate properties
(i.e. stiffnesses) are obtained by integrating the lamina properties
through the thickness. Thus, laminate plate theories are equivalent
single-layer theories. In the 'classical laminate plate theory' (CLPT),
which is an extension of the classical plate theory (CPT) to laminated
plates, the transverse stress components are ignored. The classical
laminate plate theory is adequate for many engineering problems.
However, laminated plates made of advanced filamentary composite
materials, whose elastic to shear modulus ratios are very large, are
susceptible to thickness effects because their effective transverse

shear moduli are significantly smaller than the effective elastic moduli




along fiber directions. These high ratios of elastic to shear moduli
render the classical laminated plate theory inadequate for the analysis
of thick composite plates.

The first, stress-based, shear deformation plate theory is due to
Reissner [1-3]. The theory is based on a linear distribution of the
inplane normal and shear stresses through the thickness,

My 2 My
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where (01,02) and og are the normal and shear stresses, (M;,M,) and Mg
are the associated bending moments (which are functions of the inplane
coordinates x and y), z is the thickness coordinate and h is the total
thickness of the plate. The distribution of the transverse normal and
shear stresses (03, o and 05) is determined from the equilibrium
equations of the three-dimensional elasticity theory. The differential
equations and the boundary conditions of the theory were obtained using
Castigliano's theorem of least work.

The origin of displacement-based theories is attributed to Basset
[4]. Basset assumed that the displacement components in a shell can be
expanded in a series of powers of the thickness coordinate ¢. For
example, the displacement component u; along the &1 coordinate in the
surface of the shell can be written in the form

Uy (81aEpst) = uS(eqagy) + 1 "M (g ,e)) (1.2a)

where &4 and g, are the curvilinear coordinates in the middle surface of

the shell, and u{") have the meaning

dnu

U](.n)(E]_QEz) = n= 0,1,2,... (I.Zb)

" le=0




Basset's work did not receive as much attention as it deserves. In a
1949 NACA technical note, Hildebrand, Reissner and Thomas [5] presented
a displacement-based shear deformation theory for shells (also see
Hencky [6]). They assumed the following displacement field,

Up(g148p58) = U(ggs8,) + T o (£,85)

UplE1s8ps8) = V(g 8)) + ¢ o (5)58))

U3(Ey58552) = w(gy,8)) (1.3)

The differential equations of the theory are then derived using the
principle of minimum total potential energy. This approach results in
five differential equations in the five displacement functions, u, v,
W, ¢x’ and ¢y'

The shear deformation theory based on the displacement field in Eq.
(1.3) for plates is often referred to as the Mindlin plate theory.
Mind1in [7] presented a complete dynamic theory of isotropic plates
based on the displacement field (1.3) taken from Hencky [6]. We shall
refer to the shear deformation theory based on the displacement field
(1.3) as the first-order shear deformation theory.

A generalization of the first-order shear deformation plate theory
for homogeneous isotropic plates to arbitrarily laminated anisotropic
plates is due to Yang, Norris, and Stavsky [8] and Whitney and Pagano
[9]. Extensions of the classical von Karman plate theory [10] to shear
deformation theories can be found in the works of Reissner [11,12]
Medwadowski [13], Schmidt [14] and Reddy [15].

Higher-ordér, displacement-based, shear deformation theories have

been investigated by Librescu [16] and Lo, Christensen and Wu [17]. In




these higher-order theories, with each additional power of the thickness
coordinate an additional dependent unknown is introduced into the
theory. Levinson [18] and Murthy [19] presented third-order theories
that assume transverse inextensibility. The nine displacement functions
were reduced to five by requiring that the transverse shear stresses
vanish on the bounding planes of the plate. However, both authors used
the equilibrium equations of the first-order theory in their analysis.
As a result, the higher-order terms of the displacement field are
accounted for in the calculation of the strains but not in the governing
differential equations or in the boundary conditions. These theories
can be shown (see Librescu and Reddy (20]) to be the same as those
described by Reissner [1-3]. Recently, Reddy [21-23] developed a new
third-order plate theory, which is extended in the present study to

laminated shells.

1.2 Review of Literature

Shell structures are abundant on the earth and in space. Use of
shell structures dates back to ancient Rome, where the roofs of the
Pantheon can be classified today as thick shells. Shell structures for
a long time have been built by experience and intuition. No logical and
scientific study had been conducted on the design of shells until the
eighteenth century.

The earliest need for design criterion for shell structures
probably came with the development of the steam engine and its attendant
accessories. However, it was not until 1888, by Love [24], that the

first general theory was presented. Subsequent theoretical efforts have




been directed towards improvements of Love's formulation and the
solutions of the associated differential equations.

An ideal theory of shells require a realistic modeling of the
actual geometry and material properties, and an appropriate description
of the deformation. Even if we can take care of these requirements and
derive the governing equations, analytical solutions to most shell
problems are nevertheless limited in scope, and in general do not apply
to arbitrary shapes, load distributions, and boundary conditions.
Consequently, numerical approximation methods must be used to predict
the actual behavior.

Many of the classical theories were developed originally for thin
elastic shells, and are based on the Love-Kirchhoff assumptions (or the
first approximation theory): (1) plane sections normal to the
undeformed middle surface remain plane and normal to the deformed middle
surface, (2) the normal stresses perpendicular to the middie surface can
be neglected in the stress-strain relations, and (3) the transverse
displacement is independent of the thickness coordinate. The first
assumption leads to the neglect of the transverse shear strains.

Surveys of various classical shell theories can be found in the works of
Naghdi [25] and Bert [26]. These theories, known as the Love's first
approximation theories (see Love [24]) are expected to yield
sufficiently accurate results when (i) the lateral dimension-to-
thickness ratio (a/h) is large; (ii) the dynamic excitations are within
the low-frequency range; (iii) the material anisotropy is not severe.

However, application of such theories to layered anisotropic composite



shells could lead to as much as 30% or more errors in deflections,
stresses, and frequencies.

As noted by Koiter [27], refinements to Love's first approximation
theory of thin elastic shells are meaningless, unless the effects of
transverse shear and normal stresses are taken into account in the
refined theory. The transverse normal stress is, in general, of order
h/R (thickness to radius ratio) times the bending stresses, whereas the
transverse shear stresses, obtained from equilibrium conditions, are of
order h/a (thickness to the length of long side of the panel) times the
bending stresses. Therefore, for a/R < 10, the transverse normal stress
is negligible compared to the transverse shear stresses.

Ambartsumyan [28,29] was considered to be the first to analyze
laminates that incorporated the bending-stretching coupling due to
material anisotropy. The laminates that Ambartsumyan analyzed are now
known as laminated orthotropic shells because the individual orthotropic
layers were oriented such that the principal axes of material symmetry
coincided with the principal coordinates of the shell reference
surface. In 1962, Dong, Pister and Taylor [30] formulated a theory of
thin shells laminated of anisotropic shells. Cheng and Ho [31]
presented an analysis of laminated anisotropic cylindrical shells using
Flugge's shell theory [32]. A first approximation theory for the
unsymmetric deformation of nonhomogeneous, anisotropic, elastic
cylindrical shells was derived by Widera and his colleagues [33,34] by
means of asymptotic integration of the elasticity equation. For a

homogeneous, isotropic material, the theory reduced to the Donnell's




equation. An exposition of various shell theories can be found in the
article by Bert [26] and monograph by Librescu [35].

The effect of transverse shear deformation and transverse isotropy
as well as thermal expansion through the shell thickness were considered
by Gulati and Essenberg [36] and Zukas and Vinson [37]. Dong and Tso
[38] presented a theory applicable to layered, orthotropic cylindrical
shells. Whitney and Sun [39] developed a higher-order shear deformation
theory. This theory is based on a displacement field in which the
displacements in the surface of the shell are expanded as linear
functions of the thickness coordinate and the transverse displacement is
expanded as a quadratic function of the thickness coordinate. Recently,
Reddy [40] presented a shear deformation version of the Sanders shell
theory for laminated composite shells, Such theories account for
constant transverse shear stresses through thickness, and therefore
require a correction to the transverse shear stiffness.

As far as the finite element analysis of shellis is concerned, the
early works can be attributed to those of Dong [41], Dong and Selna
[42], Wilson and Parsons [43], and Schmit and Monforton [44]. The
studies in [41-44] are confined to the analysis of orthotropic shells of
revolution. Other finite element analyses of laminated anisotropic
composite shells include the works of Panda and Natarajan [45],
Shivakumar and Krishna Murty [46], Rao [47], Seide and Chang [48],
Venkatesh and Rao [49], Reddy and his colleagues [15,50-51], and Noor
and his colleagues [52-54].



1.3 Present Study

While the three-dimensional theories [55-60] give more accurate
results than the lamination (classical or shear deformation) theories,
they are intractable. For example, the 'local' theory of Pagano [60]
results in a mathematical model consisting of 23N partial differential
equations in the laminate's midplane coordinates and 7N edge boundary
conditions, where N is the number of layers in the laminate. The
computational costs, especially for geometrically nonlinear problems or
transient analysis using the finite element method, preclude the use of
such a theory. As demonstrated by Reddy [21-23] and his colleagues [61-
63], the refined plate theory provides improved global response
estimates for deflections, vibration frequencies and buckling loads for
laminated composite plates. The present study, motivated by the above
findings, deals with the extention of the third-order plate theory of
Reddy [21-23] to laminated composite shells. The theory also accounts
for the von Karman strains. The resulting theory contains, as special
cases, the classical and first-order theories of plates and shells.
Mixed variational formulations and associated finite-element models are
developed in this study. The significant and novel contributions of the
research conducted (in addition to those reported in the first year's
report [23]) are:

1. The formulation of a new third-order theory of laminated shells
that accounts for a parabolic distribution of the transverse
shear stresses and the von Karman strains.

2. The derivation of the exact solutions of the new theory for

certain simply supported laminated composite shells.




3.

The development of a mixed variational principle for the new
theory of shells, which yields as special cases those of the
classical (e.g., Love-Kirchhoff) and the first-order theory.
The development of a mixed, C°-finite-element and its

application to the bending and vibration analysis of laminated

composite shells.




2. FORMULATION OF THE NEW THEORY

2.1 Kinematics

Let (51,52,;) denote the orthogonal curvilinear coordinates (or
shell coordinates) such that the £y- and g,-Curves are lines of
curvature on the midsurface ¢=0, and z-curves are straight lines
perpendicular to the surface z=0 . For cylindrical and spherical shells
the lines of principal curvature coincide with the coordinate lines.

The values of the principal radii of curvature of the middle surface are
denoted by R; and R,.

The position vector of a point on the middle surface is denoted
by r, and the position of a point at distance ¢ from the middle surface
s denoted by R. The distance ds between points (gl,gz,O) and (gl+dgl,
52+d52,0] is determined by (see Fig. 2.1)

(ds)2 = dr - dr
2 2 2 2
= Gl(dil) + az[dgz) (2.1)
ar
where dr = gldgl + gzdgz, the vectors gl and 92 [gi = 35;) are tangent
to the §1 and Es coordinate lines, and aq and a, are the surface metrics
2 2
9191 " 91 » 995 9pe (2.2)
The distance dS between points [51,52,;) and [gl+dgl,52+dg2,;+d;) is
given by
2 _
(dS)© = dR - dR
2 2 2 2 2
= L{(de)® + L5(de,)? + 15(de)? (2.3)




Figure 2.1

11

(c)

Geometry and stress resultants of a shell
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aR aR 3R

where dR = EEI dgl + EEE dgz + Fr dz, and Ll' L2 and L3 are the Lame'

coefficients

Ly = a1+ Tq] oLy =ay(l+ ), Ly =1 (2.4)

aR 3R

[t should be noted that the vectors G1 = — and G, = — are parallel
~ 3g1 ~2 3k,

to the vectors 9, and Py respectively.

2.2 Displacement Field

The shell under consideration is composed of a finite number of
orthotropic layers of uniform thickness (see Fig. 2.2). Let N denote
the number of layers in the shell, and 2y and g1 be the top and bottom
g-coordinates of the k-th layer. Before we proceed, a set of
simplifying assumptions that provides a reasonable description of the
behaviors are as follows:

1. thickness to radius and other dimensions of shell are small.

2. transverse normal stress is negligible

3. strains are small, yet displacements can be moderately large

compared to thickness

Following the procedure similar to that presented in [21] for flat

plates, we begin with the following displacement field:

G(El.zz.c,t] = (1+ %I]u *Top +n2y + 30y

Cd

V(Elssnggt] = (1 + R—Z')V + Cd)z + CZwZ + 5392

W[gl,gz,c,t] =W (2.5)

where t is time, (U,v,w) are the displacements along the (gl,sz,c)
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coordinates, (u,v,w) are the displacements of a point on the middle
surface and 6y and ¢, are the rotations at z = 0 of normals to the
midsurface with respect to the £o- and g, -axes, respectively. All of
(u,v,w,¢1,¢2,w1,¢2,91,92) are functions of £ and £, only. The
particular choice of the displacement field in Eq. (2.5) is dictated by
the desire to represent the transverse shear strains by quadratic
functions of the thickness coordinate, z, and by the requirement that
the transverse normal strain be zero. The kinematics of deformation of
a transverse normal in various theories is shown in Fig. 2.3.

The functions by and 8. will be determined using the condition that
the transverse shear stresses, 013 = 9 and 953 = 9 vanish on the top

and bottom surfaces of the shell:

h h
05(51,52, * 5 t)=0 , 04[51,52, 5 t) =0 (2.6)

These conditions are equivalent to, for shells laminated of orthotropic
layers, the requirement that the corresponding strains be zero on these
surfaces. The transverse shear strains of a shell with two principal

radii of curvature are given by

u 1 aw u
=5+ ¢, + 200, + 3726, + — — - =—
v, 1 aw v
97 % *a, 88, R (2.7)
v 1 aw v
==+ ¢, + 2ty, + 3g20, + — — - ——

Sett'ing 85[51;5;2,1.'2— gt) and 84(51352’ 1’% ,t) to zero, we obtain
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UNDEFORMED

DEFORMED IN CLASSICAL
(KIRCHHOFF) THEORY

DEFORMED IN THE FIRST
ORDER THEORY

DEFORMED IN THE THIRD
ORDER (PRESENT) THEORY

Figure 2.3 Assumed deformation patterns of the transverse normals
in various displacement-based theories.
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‘bl = ‘1’2 =0
4 1 aw
oy = - 23 (6 + - 5¢)
1 3h2 1 Gl 3&1
4 1 aw

8 =_—(¢ +———-) (2'8)

Substituting Eq. (2.8) into Eq. (2.5), we obtain

- 3 4 1 aw

U= (1+3)u+cey +c° —5 [-0; - = =

- 3 4 1 aw

V= (1420 + 2o, +2° —5 [-4, - =— (2.9)

This displacement field is used to compute the strains and
stresses, and then the equations of motion are obtained using the

dynamic analog of the principle of virtual work.

2.3 Strain-Displacement Relations

Substituting Eq. (2.9) into the strain-displacement relations

referred to an orthogonal curvilinear coordinate system, we obtain

Qe
€y = eg + ;(Kg + ;zng)
cq = gt CZKi
eg = eg *+ czxé
cg = g + t(xd + Acf) (2.10)

where




2 3 W
R At )
6 3h2 Xy Xy X193,
Here X4 denote the cartesian coordinates (dxi = “idgi’ i=1,2).

17

3y W 1 ,aw (2 0 W
+ o=+ 5 ( )" =3y K T - + )
Xy R1 2 3%y 1 Xy 1 3h2 Xy axi
9o ad 2
v W 1 ,ow 2 o 2 2 4 2 3w
—_— et — 4 = (—-) s K = - ., K = . ( + ]
Xy R2 2 ‘ax 2 X, 2 3h2 X, axg

4 aw
¢, + K = (¢, + =)
2 ax2 q h2 2 X,

aw 1 4 w
by + —— kg = - — (6, + ——)
1 axy 5 we Sl axy
3o 3
-8V, 3u_ 3w 3w o__"2_ "1

aX; 93X, = aXy aX, ° 6 aX; X,

4 %2 2

2.4 Constitutive Relations

(2.11)

The stress-strain relations for the k-th lamina in the lamina

coordinates are given by

Q

Q

Q

Q

) = (K _

1 0 ) 0y, Yo o 0 €]

2 'Gzz(k) o 0 0 €2
_ 5 (k)

6) = Qe = O 0 6

4 Symm. 644(k) ﬁﬁs(k) €4

5 L st( J \eg

(k)

(k)
(2.12)

where'ﬁ..(k) are the plane stress reduced stiffnesses of the k-th lamina
1]
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in the lamina coordinate system. The coefficients 61j can be expressed

in terms of the engineering constants of a lamina:

S U N ¥ o S
11 1"\)12\)21 12 1"\)12\)21 1‘-\)12\)21
Q,, = f2 (2.13)
22 1-\’12\)21 *
Qug = 83 Q55 = Gy3  Qgg = 6y

To determine the laminate constitutive equations, Eq. (2.12) should be

transformed to the laminate coordinates. We obtain

o Q1 Q2 Qe € ] . i
9y = le 022 026 € {4} - [044 Q45] {4} (2.14)
957 (k 45 “s551(k) %57 (k
%/(k) U6 Y26 Ys6-(k) ‘6/(k)’ (W () 757(k)
where

4

Q = 611 cos%o + 2(612 + 2666)sin29 cosZe + ﬁéz sin'e

Qp = (@) + Qy, - 4666)sin29 cos?e +’612(sin4e + cos’e)
Q,, = 511 sinfe + 2(612 + Zﬁés)sinze cosle + 622 cos%e

5. .0 7 Ve 3, .5 .7 T vein3
(Q11 - 012 - 2066)s1ne cos™e + (le - sz + 2066)s1n 6 COS6

Q6

Qg = (511 -'612 - 2666)sin3e cose + (612 - 522 + Zﬁes)sine cos3o

066 = (611 + 622 - 2612 - 2665)S1n29 C0529 + 666(5‘”\49 + COS49)

T., cosle + 655 sinZs

Qg = Qq

Qs = (555 - 644)cose sine
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Q5 = 655 cosZe + 644 sinZe (2.15)

2.5 Equations of Motion

The dynamic version of the principle of virtual work for the

present case yields

IO[ f—h/Z{I(k)[o 55( )+ 02 GE(k)+ 06 Ge( )+ 04 § (k)+ 05 6€§k)]
b2 kY (a2 s 2, i
dx dx,}dz - [ qawdxldx - S(Ih/z{jn o[ (T)+(V)4+(W) ]dxldxz}d;)]dt

t
_ o 0 2 o} o}
= IO{IQ[[NIGSI + M16K1 + Plsnl + stgz + MZGKZ

2 o} o] 2 o} 1 o 1
+ stnz + Nsae6 + M65‘6 + Pssn6 + 02554 + Kydiy + lees + Klans - qéw]

+ [(Tiu + Té¢1 'T3 %gz]su + (Tiv + Ié&z - Té 3¥E)GV
. a; v a¢ 161 2.. 2..
+(T au +'I‘ 1+T. v +T'—£- 7(3W+3W)+Iw)5w
3 ax1 5 X1 3 X5 53 2 gh4 ax% axg 1

e . - aw = o
+ [12u +Tpe, -1 ——I]5¢1 + (Iév + Tpe, - I5 2)6¢2]dx dxz}dt
(2.16)
where q is the distributed transverse load, Ni' Mi’ etc. are the

resultants,

n
(Ni’Mi’Pi] = I I °$k)(1.c,c3)dc (i = 1,2,6)
k=l 2

@k = 2 [0 of)edae
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n °k (k) 2
(029K2] = I I 04 (l,C )dC
k=1 Ck_l

(2.17)

The inertias Tg and T; (i =1,2,3,4,5) are defined by the equations,

and

(2.18a)
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z
n k
(11912913!14’15917) = I ,r (k)(]-sCsC 3C3,C4QC )dC (2.18[))
k=1 ¢
k-1
The governing equations of motion can be derived from Eq. (2.16) by

integrating the displacement gradients by parts and setting the

coefficients of su,sv,8w and 8, (i = 1,2) to zero separately:

aN1 aN6 _ . - ow
su: —a—x—l'-l' —ax—z = Ilu + 12¢1 - I3 ?)q
aN aN -
L] —-§- ——2‘_'—.' T _— —a!-—
vt T T Tae - Ty B
2 2 2
" an 302 ] ﬂg (aK1 aKZ) . 42 (a Zl . 3 22 . 3 P6 )
Xy Xy pf Xy X' 3 ax] 9 aX13%5
N N - 3 y a¢
1 2 3l = 1 =, av = 2
et NW) =T, M T, 2T LT Ly L
R1 R2 3 Xy 5 Xy 3 ax2 5 3%, 1
1617 (32w . az;)
" on? 2 2/ — 4
ax] X
aM aM 3P 3P -
. 1 .76 4 4 1 6, _ ., T - W
e P, Wtz g Grptaxy) T et - s g
aM aM aP aP -
. _6, "2 4 4 6 2\ _ T T T 9W_
20 ax Y, Q, + 2 Ky - Y (axl + ax2) = Lv+ Ipe, - I X
(2.19)
where
W 3 aw W
N(w) = __I (Nl axq + N6 axz) + aX, (N6 axq M N2 EYE' (2.20)

The essential (i.e., geometric) and natural boundary conditions of the

theory are given by:
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Ups Upgs W %%9'%§’ ns Ons (essential)
Nn’ an, 6n’ ;n’ Bs’ ﬁn, ﬁns (natural) (2.21)
where
N, = 2N+ n§N2 + 2nn Ne
Nos = (N = Npnon + Ng (nC - n§)
Pn = n)z(P1 + n§P2 + 2nxnyP6

= 2 2
Prs = (P2 - Pl)nxny + P6(nx - ny)

_ .2 2
Mn = an1 + nyM2 + annyMG

- 2 2
MnS = (M2 - Ml)“xny + Mﬁ(nx - ny)
~ aP aP
= w w 4 n ns 4
Qn - Nn an T an as T 37 (an * 3s ) + Qn T2 Kn
3h h
Qn = nxQI + nyQZ
Kn = nxK1 + nyK2
- 4
P =-—57P
n 3h2 n
=__4_
ns 3h2 ns
y 4
M =M -—P
n n 3h2 n
v . 4
=M - = Pns (2.22)
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and ny, and ny

boundary of the laminate.

are the direction cosines of the unit normal on the

The resultants can be expressed in terms of the strain components

(i,j = 1,2,6)

(5 = a,5)

using Egs. (2.10) and (2.12) in Eq. (2.14). We get
_ o, 0 2
Ni = Aijej + Binj + Einj
M. =B..e2+D..x0 +F,. g
i =85 * Doyt iy
P, = E..eo. + F..Ko. + H..|<2.
1 1JJ 13 ] 1J ]
0 1
Q2 A4j€J + D4jKj
_ 0 1
Ql ASjEJ + D5jKj
_ 0 1
K2 = D4jej + F4jKj
_ o 1
K1 = Dsej + FSjKj
where Aij’ Bij’ etc. are the laminate stiffnesses,

(A; 585500 5o oF 4 oM

n %
=1 [ Qgg) (1,c,c2,c3
k=1 Ck_l

for i,j = 1,2,4,5,6.

132745

,

)

c4,c6)dc

(2.23)

(2.24)

(2.25)




3. THE NAVIER SOLUTIONS

3.1 Introduction

Exact solutions of the partial differential equations (2.19) on
arbitrary domains and for general conditions is not possible. However,
for simply supported shells whose projection in the xlxz-p1ane is a
rectangle, the linear version of Eq. (2.19) can be solved exactly,
provided the lamination scheme is of antisymmetric cross-ply [0°/90°/
0°/90°...] or symmetric cross-ply [0°/90°...]S type. The Navier

solution exists if the following stiffness coefficients are zero [21]:

Ai6 = 316 = 016 = Eiﬁ = F16 = Hiﬁ =0 , (i=1,2) (3.1)
Ags = Dg5 = Fyg = 0
The boundary conditions are assumed to be of the form,
u(xl,O) = u(xl,b) = v(0,x2) = v(a,xz) =0

w(xl,O) = w(xl,b) = w(O,xz) = w(a,xz) =0

aw _ W _ _ AW -
5;’ (xlso) T ax (xlab) T g (09X2) T 3x (asxz) 0
1 1 2 2
N2(x1,0) = Nz(xl,b) = Nl(O,xz) = Nl(a,xz) =0

Mz(xl,O) = M2(x1,b) = MI(O’XZ) = M1 (3.2)

—~
o}
-
>
N
~
|
o

I
o

P2(x1,0) = P2(x1,b) = Pl(O,xz) = Pl(a,xz) =

¢1(X190) = ¢1(X1,b) ¢2(0,X2) = ¢2(a,x2) =0

where a and b denote the lengths along the X1- and x,-directions,

respectively (see Fig. 3.1).

24
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Figure3.1 The geometry and the coordinate system for a
projected area of .shell element




26

3.2 The Navier Solution

Following the Navier solution procedure (see Reddy [21]), we assume
the following solution form that satisfies the boundary conditions in
Eq. (3.2):

o«

u= ¢ U fl(xl,xz)

m,n=1 mn
v = m i_ Vinf2(X2%2)
W= . §=1 wmnf3(x1,x2) (3.3)
IS |
°p = I *mf1(Xpe%p)
05 = I o2 ¢ (xl,x )
m,n=l ™M 2 2
where
fl(xl’XZ) = c05axlsinex2, f2(x1,x2) = sinaxlcosexz
(3.4)
f3(x1,x2) = sinaxlsinexz, a = mn/a, 8 = nu/b
Substituting Eq. (3.3) into Eq. (2.19), we obtain
Urn Unn 0
Vin Van 0
(M} AW ) + [C] W =(Qun) » for any m,n
..1 1
*min ®mn 0
.-2 2
®n ®mn 0 (3.5)

where Q,, are the coefficients in the double Fourier expansion of the

transverse load,
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o

qa(xq1s%5) = & Q Fa(xq,X%,) (3.6)
12727 = g Wt 311072

and the coefficients Mij and Cij(i,j =1,2,...,5) are given in Appendix

A.

Equation (3.5) can be solved for UpnsVmn» etc., for each m and n,
and then the solution is given by Eq. (3.3). The series in Eq. (3.3)
are evaluated using a finite number of terms in the series. For free

vibration analysis, Eq. (3.5) can be expressed as an eigenvalue

equation,
(c1 - w“M) s} = {0} (3.7)
where {a} = {Umn’vmn’wmn’°;n’°§n}T’ and w is the frequency of natural

vibration. For static bending analysis, Eq. (3.5) becomes

0
0

[C1{a} = (Qun (3.8)
0
0



4, MIXED VARIATIONAL PRINCIPLES

4.1 Introduction

The variational formulations used for developing plate and shell
elements can be classified into three major categories:
(i) formulations based on the principle of virtual displacements (or the
principle of total potential energy), (ii) formulations based on the
principle of virtual forces (or the principle of complementary energy)
and (iii) formulations based on mixed variational principles(Hu-Washizu-
Reissner's principles). The finite-element models based on Fhese

formulations are called, respectively, the displacement models,

equilibrium models and mixed models.

In the principle of virtual displacements, one assumes that the
kinematic relations (i.e., strain-displacement relations and geometric
boundary conditions) are satisfied exactly (i.e., point-wise) by the
displacement field, and the equilibrium equations and force boundary
conditions are derived as the Euler equations. No a-priori assumption
concerning the constitutive behavior (i.e., stress-strain relations) is
necessary in using the principle. The principle of (the minimum) total
potential energy is a special case of the principle of virtual
displacements applied to solid bodies that are characterized by the

strain energy function U such that

BU(ei.) _

= 0Os o
aeij 1]

where €43 and %4 are the components of strain and stress tensors,
respectively. When the principle of total potential energy is used to

28
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develop a finite-element model of a shell theory, the kinematic
relations are satisfied point-wise but the equilibrium equations are met
only in an integral (or variational) sense. The principle of
complementary potential energy, a special case of the principle of
virtual forces, can be used to develop equilibrium models that satisfy
the equilibrium equations point-wise but meet the strain compatibility
only in a variational sense.

There are a number of mixed variational principles in elasticity
(see [64-71]). The phrase 'mixed' is used to imply the fact that both
the displacement (or primal) variables and (some of the) force (or dual)
variables are given equal importance in the variational formulations.
The associated finite-element models use independent approximations of
dependent variables appearing in the variational formulation. There are
two kinds of mixed models: (i) models in which both primal and dual
variables are interpolated independently in the interior and on the
boundary of an element, (ii) models in which the variables are
interpolated inside the element and their values on the boundary are
interpolated by the boundary values of the interpolation. The first

kind are often termed hybrid models, and the second kind are known

simply as the mixed models. In the present study the second kind (i.e.,

mixed model) will be discussed.

4.2 Variational Principles

To develop a mixed variational statement of the third-order
laminate theory, we rewrite Eq. (2.23) in matrix notation as follows:

N} = [A*]{c®} + [B*]{M} + [E*]{P}
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(5} = [B*1%{°) - [D*]{M} - [F*]{P} (4.1)
e} = (ER1H(0) - [rrItM) - (He1{P)
where
3¢1
ax
1)
e} = - (4 + (D ) = {55
3¢1 3¢2
3y | ax
2
ax 1
2
cy . (2w oy . Jav ,w 1 w2
o} = w2 [ e} = ay+R2+2(ay)
32W au av IW AW
axay 3y T ax T oax ay
4 4
cq =—% and ¢, = —5
1732 nd ¢, 2
(81)% rio1 (F17°! (i8]
[A*] = [A] - [ ] (symmetric)
[E] [(F]1 [H] [E]
[B*] = [B][D*] + [E][F*] (not symmetric)
(E*] = [BI[F*] + [E][H*] (not symmetric)
[[D*l [F*]] (0] [FI7
= [ ] (symmetric) (4.2)
[F*] [H*] (F1 [H]

Note that in this part the notation x = x; and y = xp is used, and | ]t
denotes the transpose of a vector or matrix.

To develop a mixed variational statement of the third-order
laminate theory, the generalized displacements (u, v, w, ¢ ¢2) and
generalized moments (M;, My, Mg, Py, Po, Pg) are treated as the

dependent variables.
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The mixed functional associated with the static version of Egs.
(2.19), (4.1) is given by [a = (u, v, w, 015 095 M1, My, Mg, Py, Py,

Pe) 1.
g (1) = [ (3 100+ (1P aB I ) + (el (e
+ M) - EERI(R) - My troxl (w)
+ P} - 5 (P (P}
+3 (1AL - qwldxdy
- yr (N + ﬁsus +Qu+ Mo + Mo )ds (4.3)

where the quantities with a hat over them denote specified values, and

Qp = Qyn, + QZny

Un = unx + vny . Us = —uny + an

3 _ a_ a2 _ a_ _ a_
m ™ ax Ty ay e T "oy Ny ax
2 2 _ 2 2
N, = Nlnx + 2N6nxny + Nzny . NS = (N2 - Nl)nxny + N6(nx - ny)
(4.4)
aw
B %1% ax
ol = | o
¢ 3y
[A] = [A] - 2c,[D] + c5[F] (4.5)

with

Acc A D;x D Fee F
3 55 45| - 55 45| = 55 45
Al [A A ] ol [045 D44] - [Fas F44]
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Note that the bending moments (M;, My, Mg) do not enter the set of
essential boundary conditions, and the resultants (Py, P,, Pg) do not
enter the set of natural boundary conditions also.

The (mixed) variational principle corresponding to the functional

in Eq. (4.3) can be stated as follows. Of all possible configurations a

laminate can assume, the one that renders the functional TH1 stationary

also satisfies the equations of equilibrium (2.19) and the kinematic-

constitutive equations {i.e., the last two equations of Eq. (4.3)].

We note that the variational statement in Eq. (4.3) contains the
second-order derivatives of the transverse deflection w (through {«}).
To relax the continuity requirements on w, we integrate the

term {P}t{x} by parts to trade the differentiation to {P}. We obtain

g () = [ (7 (C1E A1 () + (O}ErBI (M) + (E¥I{P})

MIEIF1{P) - 3 (M} E(0%1{M}

+

(SIEM) - (P - 3 (P EIHeI P}

- aP aP
7 AR + o)l + 330

3y ) ax

+

aP6 aP2 oW
— ._) LA
aX Yy y

+

1 - qw}dxdy

IF [Nnun * NSuS + an + Mn¢n + MS¢S

+

cl(enPn + eSPS)]ds (4.6)

W aw
®n " 3n * % T 35
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We note that the stress resultants Pn and PS (hence Pis P2 and P6)
enter the set of essential boundary conditions in the case of the second
mixed formulation of the higer-order theory. As special cases, the
mixed variational statements for the classical and the first-order

theories can be obtained from Eq. (4.6) by setting appropriate terms to

Zero.



5. FINITE-ELEMENT MODEL

5.1 Introduction

The mixed variational principles presented in Chapter 4 can be used
to develop mixed finite-element models, which contain the bending
moments as the primary variables along with the generalized
displacements. Historically, at least with regard to bending of plates,
the first mixed formulation is attributed to Herrmann [72,73] and Hellan
[74].

Since the bending moments do not enter the set of essential
boundary conditions, they are not required to be continuous across
interelement boundaries. Thus, one can develop mixed models with
discontinuous (between elements) bilinear or higher-order approximation
of the bending moments. The present section deals with the development

of a mixed model based on HHZ.

5.2 Finite-Element Model

Let 2, the domain (i.e., the midplane) of the laminate, be

represented by a collection of finite elements

E
2=U 2% , o NN of = empty for e = f (5.1)
where @ = @ UT is the closure of the open domain @ and T is its
boundary. Over a typical element ne, each of the variables u, v, w,

etc. are interpolated by expressions of the form

N N N
U= ¢ UM, 4 V= I Vb, , W= I W.b. 5.2
j=1 JwJ j=1 J'J j=1 JwJ (5.2)

34
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etc., where {mj} denote the set of admissible interpolation functions
and j denotes the number of functions (see Reddy and Putcha [64]).
Although the same set of interpolation functions is used, for
simplicity, to interpolate each of the dependent variables, in general,
different sets of interpolation can be used for (u,v), w, (¢X,¢y),
(M1,M5,Mg) and (P1sP2,Pg). From an examination of the variational
statement in Eq. (4.6), it is clear that the linear, quadratic, etc.,
interpolation functions of the Lagrange type are admissible. The

resulting element is called a CO-element, because no derivative of the

dependent variable is required to be continuous across interelement
boundaries.

To develop the finite-element equations of a typical element, we
first compute the strains, rotations, and resultants in terms of their

finite element approximations. We have

(%} = {1 + () (5.3)
U W - 1
ax T ﬁ; {wi,x} {0} ﬁ; {Wi}
{u}
L W 1
SRS 23~ Bl (VU BRI )
%% * %¥ -i$i,y} {o L {0}

- (K 1{al} + [HO1{a?) (5.4)
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—~—
o™
(@]
=
——

1]
N —
o~

Io;
x
g
N
N|—
——
-
<
——

{w}

(6N} = (N1 {sa?)

{w 0} ¢1}
] f = [HZ]{A3}
{¢2}

P —
o ©
N —
N ——
n

(S} = (2 = [H1{s3)

{og
b= ({2
L (8%
= H o)

v;b {or {0} M}
; ; [ o} {u;} {0} ] ;{Mz}i = (3] {a®
{o}  {o} {wj} {MG}

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

} (5.10)
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aM aM
) [l o8 Gy ] ()
= aM aM ) {Mz}
e tae) LOF ey b feg ] (M)
- 1Y (5.11)
{Py}
P} = 31 {(p,)) = [H1{a%) (5.12)
(P}
aP aP
ax Wy 4., 5
P aP,{ * (H7]{a"} (5.13)
ax ey
Here, f, = %% . fy = %g and

fogh = Loy vy eovmyb o Qog (b= (o ¥p ¢ ooe by xbs ete(5.14)
and {u}, for example, denotes the column of the nodal values of u.

The finite-element model for the refined shear deformation theory
is derived from the variational statement in Eq. (4.6) over an
element. The first variation of the functional in (4.6) for a typical
element ° is given by

0= [{sc3E(IA*1{c) + [B*1{M} + [E*]{P})

Qe

¢ {ME([S) + [B*1P(e°) - [D*1{M} - [F*1{P})
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+ {6P}E (- ¢ {®} + [E*I{c®} - [F¥I{M} - [W*1{P})

+ (6P A1) + {s®}E(iM} - cp{P))

asP6 aaP6 asP2 aP1 aP

aw aw 6,38wW
* cl[( ax T Tay bax * ( ax 3y )ay * (ax ay )3x
aP aP
6 2,38W

- . (Njou, + Nosu + Qsw + M so, + Moo,
r
+ clensPn + clesaPS)ds (5.15)

Substitution of Egs. (5.2)-(5.14) into the variational statement in
Eq. (5.15), we obtain

S k12 33 4y S el {F}
K2l k22 @31 k@4 k@) |\ (d) (%)

03 k321 @33 3% k38 | (3 (F) (5.16)
AL kA2 (k31 k) k%) | [ (Y (F%
i (k82) (k831 k84 (k851 \(a%) (F)

where
KMy = p o b tartias L (FYy = 7 et ngds
S

[K

12

- % [ IS A (N + 2(101)dA

K2l - g
Q

(kM -

e

Q

(M1 + HOT)YEra*) (KL 1da

e

U1t e (3 1aa = kM)t
e
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k) = 7 hteendian = Lt

ne

222

(kK2 = 1+ WD () + L iV haa + T 1 bATHYan

ot o€

(K24 = T (01 + (W' Ere*11H3])aA

Qe

K21 = 7 & 1ttt + 20801)) 0
e
Q

Qe

Qe

(F) =7 fottadA + T {u)fo0s
o r®

€3] = 7 wW2rtAnH1aa, (R%3) =1 el (Y )en =

ot ot
34 = 1 e - 0
e
(5] =< [ el = (3
e

Q
X

-n

M

n
=1 wrtrt { % ds , I[R] = [
re Ms y

K = - [ 3t o*1H3]da,

Qe

K*®1 = - 1 e ndlen = (KO

Qe

|

(K] = F (1K1 + D HExIIH®] + c (uh1EHE ) on

S I I (0 (P R (e NN LR DT
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(K% = - 1 31t iedion

g8
2 2
nx ny anny
'"x"y "xny "x'"y
en
=1 it ds (5.17)
® O

Clearly, the element stiffness matrix is not symmetric. For the linear
case (i.e., [HN] = [0]), the element stiffness matrix is symmetric. The
finite-element models for the classical and first-order theories can be
obtained as special cases from Eq. (5.16). An explicit form of the
coefficients of the stiffness matrix in Eq. (5.16) is given in Appendix

B.

5.3 Solution Procedure

The assembled finite-element equations are of the form

(K% (a)1{a} = {F) (5.18)
where [KD] is the assembled (direct) stiffness matrix, unsymmetric in
general, and {a} is the global solution vector. Because the stiffness
matrix is a nonlinear function of the unknown solution, Eq. (5.18)
should be solved iteratively. Two iterative methods of analysis are
quite commonly used in the finite-element analysis of nonlinear
problems: the Picard-type direction iteration and the Newton-Raphson
iteration methods. Here the Newton-Raphson method is used to solve the

nonlinear equations.
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Suppose that the solution is required for a load of P. The load is
divided into a sequence of load steps APl, AP2, cees APn such that P

n
= £ Api' At any load step i, Eq. (5.18) is solved iteratively to

obl:%n the solution. At the end of the r-th iteration the solution for
the next iteration is obtained solving the following equation

(KTa") {sa™1 = - (R} = 1P (@™ 1 ("} + [F) (5.19)
for the increment of the solution {5Ar+1}, and the total solution is
computed from

(™ = (") (™ (5.20)

where [KT] is the tangent stiffness matrix,
T D,  .ak?
[K'] = [K"] + [ETKT] (5.21)

A geometrical explanation of the Newton-Raphson iteration is given in
Fig. 5.1.

For the finite-element models developed here, the tangent stiffness
matrix is symmetric. For example, the tangent stiffness matrix for the

model in Eq. (5.16) for plates (1/R; = 1/R, = 0) is given by

C KT )
i AT @ sy,
[K'] = : (5.22)
| ST (x>57] |
where
[KllT] - [Kll] , [KZIT] - [KZI],
(K22T) = (k221 + (0 (At A% Y )an) (o))
e

Q
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lLoad, F

0 il TS

Displacement, U

Figure 5.1 Geometric interpretation of the Newton--Raphson
iteration for the solution of one-parameter
problems.
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o @+ Nt ) da(e?)

Qe

([ At 348 (oY)
e
Q

+(F mItER ) %)
e

Q
03Ty = o1, 6327y = 132y, 33T - 133
[K41T] - [K41], [K42T] _ [K24]t, [K43T] - [K43],
[K44T] - [K44], [KSlT] - [K51], [KSZT] _ [K25]t,
[K53T] - [K53], [K54T] - [K54], [K55T] - [KSS]
(o " (o]
A = {ww}t {wk,y} (5.23)
(o5 ooy + Tog 1o )

For all coupled (i.e., bending-stretching coupling) problems, the
mixed models of classical, first-order and third-order theories have
six, eight and eleven degrees of freedom per node, respectively. If the
bending moments are eliminated at the element level, the element degrees
of freedom can be reduced by 3 (see Fig. 5.2).

The finite-element model (5.16) for the dynamic case is of the
form,

[KI{a} + [MI{s} = {F} (5.24)
where [M] is the mass matrix (see Appendix B). For free vibration, Eq.

(5.24) can be written as
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X2
\ 4 3
w
4,} V! \
1 2
"R Z O
vy %
(a) Displacement model
y
///
z /7 f;7< LZ %:
’ \ 4 3
My\P) IW] I
o, Lot ‘W x
1 7<le ol A0
Yy 1°]

(b) Mixed model

Figure 5.2 The displacement and mixed finite elements
for the third-order shear deformation theory
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[K1{a} = x[M]{a} (5.25)
where A is the square of the frequency.

The evaluation of the element matrices requires numerical
integration. Reduced integration is used to evaluate the stiffness
coefficients associated with the shear energy terms. More specifically,
the 2 x 2 Gauss rule is used for shear terms and the standard 3 x 3
Gauss rule is used for the bending terms when the nine node quadratic

isoparametric element is considered.



6. SAMPLE APPLICATIONS

6.1 Introduction

A number of representative problems are analyzed using the higher-
order theory developed in the present study. The first few problems
included here illustrate the accuracy of the present theory. These
problems are solved using the closed-form solutions presented in Section
3. Then problems that do not allow closed-form solutions are solved by
the mixed finite-element model described in Section 5.

The geometries of typical cylindrical and spherical shell panels
are shown in Fig. 6.1. Of course, plates are derived as'special cases

from cylindrical or spherical shell panels.

6.2 Exact Solutions

It is well known that the series solution in Eq. (3.3) converges
faster for uniform load than for a point load. For a sinusoidal
distribution of the transverse load, the series reduces to a single
term.

1. Four-layer, cross-ply (0/90/90/0) square laminated flat plate under
sinusoidal load

This example demonstrates the relative accuracy of the present
higher-order theory when compared to three-dimensional elasticity theory
and to the first-order theory. Square, cross-ply laminates under
simply-supported boundary conditions [see Eq. (3.2)] and a sinusoidal
distribution of the transverse load are studied for deflections. The

lamina properties are assumed to be

46
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Figure 6.1 Geometry of a typical cylindrical and spherical shell
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Ey = 25E,, Gy, = Gy3 = 0.5E,, 623 = 0.2E,, vip = vqy3 = vo3 = 0.25
Plots of the nondimensional center deflection [w = wE2h3)/qoa4] versus
the side to thickness ratio (a/h) obtained using various theories are
shown in Figure 6.2. The present third-order theory gives the closest
solution to the three-dimensional elasticity solution [58] than either

the first-order theory or the classical theory.

2. An isotropic spherical shell segment under point load at the center.

The problem data are (see Fig. 6.1 for the geometry)
Ry =R, =96.0 in., a =b = 32.0 in., h = 0.1 in.,
£, = E, = 107 psi, v = 0.3, intensity of load = 100 Tbs.

A comparison of the center transverse deflection of the present theory
(HSDT) with that obtained using the first-order shear deformation theory
(FSDT) and classical shell theory (CST) for various terms in the series
is presented in Table 1 (for simply supported boundary conditions). It
should be noted that Vlasov [76] did not consider transverse shearing
strains in his study. The difference between the values predicted by
HSDT and FSDT is not significant for the thin isotropic shell problem

considered here.

3. Cross-ply spherical shell segments under sinusoidal, uniform, and
point loads.

The geometric parameters used are the same as those used in Problem

2, and the material parameters used are the same as those used in
Problem 1. The shell segments are assumed to be simply supported.
Nondimensionalized center deflection of various cross-ply shells under

sinusoidal, uniform, and point loads are presented in Tables 2 through
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Table 1. Center deflection (-w x 103) of a simply supported spherical
shell segment under point Toad at the center (see Fig. 6.1)
W
Number of terms in the series
h Theory N=29 N =149 N =199 N=149 N =199
CST 39.591 39.647
Vlasov [79] - - 39.560 -
0.1 FSDT [40] 32.594 39.469 39.724 39.786 39.814
HSDT 32.584 39.458 39.714 39.775 39.803
0.32 FSDT 3.664 3.902 3.919 3.927 3.932
HSDT 3.661 3.899 3.916 3.923 3.927
1.6  FSDT 0.165 0.171 0.174 0.175 0.176
HSDT 0.164 0.170 0.172 0.172 0.172
3.2 FSDT 0.035 0.038 0.039 0.039 0.040
HSDT 0.035 0.037 0.037 0.037 0.037
6.4 FSDT 0.007 0.008 0.009 0.009 0.009
HSDT 0.007 0.007 0.007 0.007 0.007
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4, respectively. The difference between the solutions predicted by the
higher-order theory and the first-order theory increases with increasing
values of R/a. For a/h = 10, the difference between the deflections
given by FSDT and HSDT is larger than those for a/h = 100. For
unsymmetric laminates (0/90), FSDT yields higher deflections than HSDT,
whereas for symmetric laminates HSDT yields higher deflections than FSDT
for values of a/h = 10. Note that for point-loaded shells the
difference between the solution predicted by the first-order theory and
the higher-order theory is more significant, with FSDT results higher

than HSDT, especially for antisymmetric cross-ply laminates.

4. Natural vibration of cross-ply cylindrical shell segments

Nondimensionalized fundamental frequencies of cross-ply cylindrical
shells are presented in Table 5 for three lamination schemes: [0°/90°],
[0°/90°/0°], and [0°/90°/90°/0°]. For thin antisymmetric cross-ply
shells, the first-order theory underpredicts the natural frequencies
when compared to the higher-order theory. However, for symmetric cross-

ply shells, the trend reverses.

5. Natural vibration of cross-ply spherical shell segments

Nondimensionalized natural frequencies obtained using the first-
and higher-order theories are presented in Table 6 for various cross-ply
spherical shell segments. Analogous to cylindrical shells, the first-
order theory underpredicts fundamental natural frequencies of
antisymmetric cross-ply shells; for symmetric thick shells and symmetric

shallow thin shells the trend reverses.
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Table 2. Nondimensionalized center deflections, w = (-wh3E,/q a+)103,
of cross-ply laminated spherical shell segments ugdeP
sinusoidally distributed load (a/b = 1, Ry = R, = R, g = 100)

W

0°/90° 0°/90°/0° 0°/90°/90°/0°
R/a Theory a/h=100 a/h=10 a/h=100 a/h=10 a/h=100 a/h=10
5 FSDT 1.1948 11.429 1.0337 6.4253 1.0279 6.3623
HSDT 1.1937 11.166 1.0321 6.7688 1.0264 6.7865
10 FSDT 3.5760 12.123 2.4109 6.6247 2.4030 6.5595
HSDT 3.5733 11.896 2.4099 7.0325 2.4024 7.0536
20 FSDT 7.1270 12.309 3.6150 6.6756 3.6104 6.6099
HSDT 7.1236 12.094 3.6170 7.1016 3.6133 7.1237
50 FSDT 9.8717 12.362 4.2027 6.6902 4.2015 6.6244
FSDT 9.8692 12.150 4.2071 7.1212 4.2071 7.1436
100 FSDT 10.4460 12.370 4.3026 6.6923 4.3021 6.6264
HSDT  10.4440 12.158 4.3074 7.1240 4.3082 7.1464
Plate FSDT 10.6530 12.373 4.3370 6.6939 4.3368 6.6280
R/a== FSDT 10.6510 12.161 4.3420 7.1250 4.3430 7.1474
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Table 3. Nondimensionalized center deflections, w = (-wE, h3/q a%)

x 103, of cross-ply laminated spherical she]] ségmen?s under
uniform]y distributed load

W

0°/90° 0°/90°/0° 0°/90°/90°/0°
% Theory a/h=100 a/h=10 a/h=100 a/h=10 a/h=100 a/h=10
5 FSDT 1.7535 19.944 .5118 9.794 1.5358 9.825
HSDT 1.7519 17.566 .5092 10.332 1.5332 10.476
10 FSDT 5.5428 19.065 .6445 10.110 3.7208 10.141

HSDT 5.5388 18.744

20 FSDT 11.273 19.365
HSDT  11.268 19.064

50 FSDT 15.714 19.452
HSDT  15.711 19.155

100 FSDT  16.645 19.464
HSDT  16.642 19.168

Plate FSDT 16.980 19.469
@ 16.977 19.172

.6426 10.752 3.7195 10.904
.5473 10.191 5.6618 10.222
.5503 10.862 5.666 11.017
.4827 10.214 6.6148 10.245
.4895 10.893 6.6234 11.049
.6421 10.218 6.7772 10.294
.6496 10.898 6.7866 11.053
.6970 10.220 6.8331 10.251
.7047 10.899 6.8427 11.055

DO WWE—




Table 4. Nondimensionalized center deflection of cross-ply spherical

shell segments under point load at the center

w = -

wh3E
( Paz

)102, a/b = 1, a/h

10

Center deflection, w

R/a Theory 0°/90° 0°/90°/0° 0°/90°/90°/0°
5 FSDT 7.1015 5.1410 4.9360
HSDT 5.8953 4.4340 4.3574
10 FSDT 7.3836 5.2273 5.0186
HSDT 6.1913 4.5470 4.4690
20 FSDT 7.4692 5.2594 5.0496
HSDT 6.2714 4.5765 4.4982
50 FSDT 7.4909 5.2657 5.0557
HSDT 6.2943 4.5849 4.5065
100 FSDT 7.4940 5.2666 5.0565
HSDT 6.2976 4.5861 4.5077
Plate FSDT 7.4853 5.2572 5.0472
® HSDT 6.2987 4.5865 4.5081
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Table 5 Nondimensionalized fundamental frequencies of cross-ply
cylindrical shell panels (see Fig. 6.1 for geometry).

w = mg—z/p/E2

0°/90° 0°/90°/0° 0°/90°/90°/0C°
R/a Theory a/h=100 a/h=10 a/h=100 a/h=10 a/h=100 a/h=10
5 FSDT 16.668 8.9082 20.332 12.207 20.361 12.267
HSDT  16.690 9.0230 20.330 11.850 20.360 11.830
10 FSDT 11.831 8.8879 16.625 12.173 16.634 12.236
HSDT  11.840 8.9790 16.620 11.800 16.630 11.790
20 FSDT 10.265 8.8900 15.556 12.166 15.559 12.230
HSDT  10.270 8.9720 15.550 11.791 15.550 11.780
50 FSDT 9.7816 8.8951 15.244 12.163 15.245 12.228
HSDT 9.7830 8.9730 15.240 11.790 15.230 11.780
100 FSDT 9.7108 8.8974 15.198 12.163 15.199 12.227
HSDT 9.7120 8.9750 15.190 11.790 15.190 11.780
Plate FSDT 9.6873 8.8998 15.183 12.162 15.184 12.226
® HSDT  9.6880 8.9760 15.170 11.790 15.170 11.780
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Table 6. Nondimensionalized fundamental frequencies of cross-ply
laminated spherical shell segments
w=ud oE
0°/90° 0°/90°/0° 0°/90°/90°/0°

R/a  Theory a/h=100 a/h=10 a/h=100 a/h=10 a/h=100 a/h=10
5 FSDT  28.825 9.2309 30.993 12.372 31.079 12.437
HSDT  28.840 9.3370 31.020 12.060 31.100 12.040
10 FSDT 16.706 8.9841 20.347 12.215 20.380 12.280
HSDT  16.710 9.0680 20.350 11.860 20.380 11.840

20 FSDT 11.841 8.9212 16.627 12.176 16.638 12.240

HSDT  11.84 8.999 16.62 11.81 16.63 11.79

50 FSDT 10.063 8.9034 15.424 12.165 15.426 12.229
HSDT  10.06 8.980 15.42 11.79 15.42 11.78

100 FSDT  9.7826 8.9009 15.244 12.163 15.245 12.228

HSDT  9.784 8.977 15.24 11.79 15.23 11.78
Plate FSDT 9.6873 8.8998 15.183 12.162 15.184 12.226
HSDT  9.6880 8.9760 15.170 11.790 15.170 11.780
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6.3 Approximate (Finite-Element) Solutions

6.3.1 Bending Analysis

1. Linear analysis of a rectangular plate under uniformly distributed
load.

The geometry and boundary conditions for the problem are shown in
Fig. 6.3. The plate is assumed to be made of steel (E = 30 x 10° psi
and v = 0.3). The problem was also solved by Timoshenko [77], Herrmann
[72] and Prato [78]. Figures 6.3-6.5 contain plots of the transverse
displacement and bending moments obtained by various investigators
(using the linear theory). The agreement between the present solution
and others is very good, verifying the accuracy of the theory and the
finite element formulation.

2. Nonlinear analysis of rectangular laminates under uniformly
distributed load

Figure 6.6 contains load-deflection curves for a simply supported
square orthotropic plate under uniformly distributed load [23]. The
following geometric and material properties are used:

a=>b=12 in., h = 0.138 in.

. . 6 .
E; = 3 x 10%si, E, = 1.28 x 10%si, G;, = Gy = Gy = 0.37 x 10%si

Vip = V13 = V13 = 0.32
The experimental results and classical solutions are taken from the
paper by Zaghloul and Kennedy [79]. The agreement between the present
solution and the experimental solution is extremely good. It is clear
that, even for thin plates, the shear deformation effect is significant

in the nonlinear range.
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Figure 6.7 contains load-deflection curves for a clamped
bidirectional laminate [0/90/90/0] under uniformly distributed load.
The geometric parameters and layer properties are given by

a=>b=12 in., h = 0.096 in.,

1.8282 x 10° psi, E, = 1.8315 x 10° psi,

ey

Giz = B3
The experimental results and the classical laminate solutions are taken

6 . _ _ _
G23 = 3.125 x 10~ psi, Vip = V13 = Vp3 = 0.2395

from [79]. The present solution is in good agreement with the
experimental results, and the difference is attributed to possible
errors in the simulation of the material properties and boundary

conditions.

3. Orthotropic cylinder subjected to internal pressure.

Consider a clamped orthotropic cylinder with the following

geometric and material properties (see Fig. 6.8)

Ry = 20 in. Ry ==
E, = 2 X 108 psi, £, = 7.5 x 108 psi
GlZ = 1.25 x 106 psi

6

= G23 = 0.625 x 10" psi , h =1 1in.

Gy3

V12 = U13 = V23 = 0.25
a=101in. , P = 6.41/n psi

This problem has an analytical solution (see {77]) for the linear
case, and Rao [47] used the finite-element method to solve the same
problem. Both solutions are based on the classical theory. The center
deflections from [77] and [47] are 0.000367 in. and 0.000366 in.,

respectively. Chao and Reddy [50] obtained 0.0003764 in. and 0.0003739
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in. using the finite-element model based on the first-order shear
deformation theory and 3-D degenerate element, respectively. The
current result is 0.0003761 in., which is closer to Chao and Reddy [50],
as expected.

For the nonlinear analysis of the same problem, the present results
are compared to those of Chang and Sawamiphakdi [80] and Chao and Reddy
[50] in Fig. 6.9, which contains plots of the center deflection versus
the load obtained by various investigators. The agreement between the

various results is very good.

4. Nine-layer cross-ply spherical shell segment subjected to uniform

loading.
Consider a nine-layer [0°/90°/0°.../0°] cross-ply laminated
spherical shell segment with the following material and geometric data:
R1 = RZ = 1000 in. , a =b = 100 in.
h=1in , E =40x 10° psi

6 . 6 . 6 .
E2 = 107 psi , G12 = 0.6 x 10 psi , G13 = G23 = 0.5 x 107 psi

V{p = Vi3 = vp3 = 0.25
The present results are compared with those obtained by Noor and
Hartley [52] and Chao and Reddy [50} in Fig. 6.10. Noor and Hartley
used mixed isoparametric elements with 13 degree-of-freedom per node
which is based on a shear deformation shell theory. The present results

agree with both investigations.
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6.3.2 Vibration Analysis

Equation (5.24) can be expressed in the alternative form as

[Kyp] 1Kg,] {{Al}} [My,] [Mlzl] {{51}} {{0}} 6.1)
+ — . = .

[Kpp] [Kpol]  Uay) Mpy] M1} ey} {0}

where
[Mizl = [MZI] = [M22] = [0]
(a}" = L{u} v} T ey} (o) T
(8,07 = (01T ()T Mg} TP TP, T (PG} T (6.2)

For free vibration analysis, we wish to eliminate {AZ} as follows. From

Eq. (6.1) we have

[KypH{aq} + (Kol A} = - IMyq1{a;) (6.3)
[KZl]{Al} + [K22]{A2} =0 (6°4)
From (6.4) we have,

(85} = ~[Kyp 11Ky 1oy} (6.5)

Substituting Eq. (6.5) into Eq. (6.3), we obtain,
(Kyq] - [Kppl Kol MKy 1) {8 = - (My;1{8) (6.6)

For the free vibration case, Eq. (6.6) reduces to
(K] - u°(M1) {85} = 0 (6.7)

where w is the natural frequencies of the system.

1. Natural frequencies of a two-layer [0°/90°] laminated plate.

The geometric and material properties used are

a=>b-=100 in. , h =0.1 1in.

£, = 40 x 108 psi E, = 10° psi.

- - 6 < - - -
G12 = G13 = G23 = 0.5 x 107 psi , V1p T Vi3 = Vp3 = 0.25
o =1 1b-sec2/1'n4
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The boundary conditions are shown in Fig. 6.11, which also contains
the plots of the ratios wNL/“L versus wo/h. Here wNL and Wy denote the
nonlinear and linear natural frequencies, and Wy is the normalized
center deflection of the first node. The results are compared with
those of Chia and Prabhakara [81], and Reddy and Chao [82]. The present
results are slightly higher compared to those obtained by the classical

and first-order shear deformation theories.

2. Natural frequencies of two-layer [45°/-45°] angle-ply square plate.

The material and geometric parameters used are

E

1 10 x 106 psi , E2 = 106 psi
_ 6 .

612 = G13 = G23 = 0.3333 x 107 psi ,

2

Vip = V{3 = Vp3 = 0.3
o =1 b-sec.?/in® , a=b=10014n. , h=0.11n.

The boundary conditions used are shown in Fig. 6.12, which also
contains plots of “NL/wL versus wo/h. For this case, no results are

available in the literature for comparison.

3. Natural vibration of two-layer [0°/90°] cross-ply plates.

Consider a two-layer cross-ply plate with the following geometric

and material properties:

£, = 7.07 x 10% psi , E, = 3.58 x 10° psi

G G

1p = Gpg = 63 = 141 x 10° psi , vy, = vjz = vpy = 0.3
o =1 1b-sec.?/in.* , a/h=1000 , a =100 in.

The results of wNL/wL versus wo/h are shown in Fig. 6.13. Compared
to the results of Reddy [82] and Chandra and Raju [83], the results of
the present study are in general a little higher. The fact that the
present results for natural frequencies are higher than those predicted

by the first-order theory indicates that the additional inertia terms

contribute to the increase of natural frequencies.
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BC1 boundary conditions:

u=w=¢,=0; M,=P,=0 along X, = b/2
VE=wW=¢,=0; M] =P] =0 along x| = a/2
u=¢,=0; M6= 6 =0 along x| = 0
v=4¢,=0; M6= P6 =0 along Xy = 0
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Figure 6,13 Ratio of the nonlinear to linear frequency versus the
amplitude to thickness ratio of a two-layer cross-ply
(0°/90°) square laminate.



7. SUMMARY AND RECOMMENDATIONS

7.1 Summary and Conclusions

The present study dealt with the following major topics:

(1)

(i1)

(iii)

(iv)

The development of a variationally-consistent, third-order
shear deformation theory of laminated composite doubly-curved
shells. The theory accounts for (a) the parabolic variation
of the transverse shear strains, and (b) the von Karman
strains. It does not require the use of the shear correction
coefficients.

The development of the closed-form solutions (for the linear
theory) for the simply supported cross-ply laminates. These
solutions are used as a check for the numerical analysis of
shells.

The construction of a mixed variational principle for the
third-order theory that includes the classical theory and the
first-order theory as special cases.

The development and application of the finite-element model
of the third-order theory for laminated composite shells,
accounting for the geometric nonlinearity in the sense of von

Karman (moderate rotations).

The increased accuracy of the present third-order theory (for thin

as well as thick laminates) over the classical or first-order shear

deformation theory is demonstrated via examples that have either the

three-dimensional elasticity solution or experimental results. Many of

the other results on bending and vibration analysis included here can

serve as references for future investigations.

73
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7.2 Some Comments on Mixed Models

The displacement model of the classical laminate theory requires
the use of Cl elements, which are algebraically complex and
computationally expensive. The C° mixed elements are algebraically
simple and allows the direct computation of the bending moments at the
nodes. The inclusion of the bending moments as nodal degrees of freedom
not only results in increased accuracy of the average stress compared to
that determined from the displacement model but it allows us to
determine stresses at the nodes. This feature is quite attractive in
contact problems and singular problems in general. It should be noted
that the bending moments are not required to be continuous across
interelement boundaries, as was shown in Chapter 4. The mixed models
based on the shear deformation theories also have the same advantages,
except that the displacement model of the first-order shear deformation
theory is also a C° element. In general, the formulative and

programming efforts are less with the mixed elements.

7.3 Recommendations

The theory presented here can be extended to a more general theory;
for example, the development of the theory in general curvilinear
coordinates, and for more general shells (than the doubly-curved shells
considered here). Extension of the present theory to include nonlinear
material models is awaiting. Of course, the inclusion of thermal loads
and damping in the present theory is straight forward.
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Mass Matrix [M] for the Mixed Model
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For the tangent stiffness matrix, the coefficients are given by
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A11 others are same as those in [K].
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